Posts Tagged 'Shapiro Wilk'

Metode Shapiro-Wilk untuk Uji Normalitas

Metode Shapiro Wilk menggunakan data dasar yang belum diolah dalam tabel distribusi frekuensi. Data diurut, kemudian dibagi dalam dua kelompok untuk dikonversi dalam Shapiro Wilk. Dapat juga dilanjutkan transformasi dalam nilai Z untuk dapat dihitung luasan kurva normal.

Rumus

Persyaratan

a. Data berskala interval atau ratio (kuantitatif)

b. Data tunggal / belum dikelompokkan pada tabel distribusi frekuensi

c. Data dari sampel random

Signifikansi

Signifikansi dibandingkan dengan tabel Shapiro Wilk. Signifikansi uji nilai T3 dibandingkan dengan nilai tabel Shapiro Wilk, untuk dilihat posisi nilai probabilitasnya (p). Jika nilai p lebih dari 5%, maka Ho diterima ; H1 ditolak. Jika nilai p kurang dari 5%, maka Ho ditolak ; H1 diterima. Jika digunakan rumus G, maka digunakan tabel distribusi normal.

Metode Kolmogorov-Smirnov untuk Uji Normalitas

Metode Kolmogorov-Smirnov tidak jauh beda dengan metode Lilliefors. Langkah-langkah penyelesaian dan penggunaan rumus sama, namun pada signifikansi yang berbeda. Signifikansi metode Kolmogorov-Smirnov menggunakan tabel pembanding Kolmogorov-Smirnov, sedangkan metode Lilliefors menggunakan tabel pembanding metode Lilliefors.

Rumus

Keterangan :

Xi = Angka pada data

Z = Transformasi dari angka ke notasi pada distribusi normal

FT = Probabilitas komulatif normal

FS = Probabilitas komulatif empiris

FT = komulatif proporsi luasan kurva normal berdasarkan notasi Zi, dihitung dari luasan kurva mulai dari ujung kiri kurva sampai dengan titik Z.

Persyaratan

a. Data berskala interval atau ratio (kuantitatif)

b. Data tunggal / belum dikelompokkan pada tabel distribusi frekuensi

c. Dapat untuk n besar maupun n kecil.

Siginifikansi

Signifikansi uji, nilai | FT – FS | terbesar dibandingkan dengan nilai tabel Kolmogorov Smirnov. Jika nilai | FT – FS | terbesar kurang dari nilai tabel Kolmogorov Smirnov, maka Ho diterima ; H1 ditolak. Jika nilai | FT – FS | terbesar lebih besar dari nilai tabel Kolmogorov Smirnov, maka Ho ditolak ; H1 diterima. Tabel Nilai Quantil Statistik Kolmogorov Distribusi Normal.

Uji Normalitas

Data klasifikasi kontinu, data kuantitatif yang termasuk dalam pengukuran data skala interval atau ratio, untuk dapat dilakukan uji statistik parametrik dipersyaratkan berdistribusi normal. Pembuktian data berdistribusi normal tersebut perlu dilakukan uji normalitas terhadap data. Uji normalitas berguna untuk membuktikan data dari sampel yang dimiliki berasal dari populasi berdistribusi normal atau data populasi yang dimiliki berdistribusi normal. Banyak cara yang dapat dilakukan untuk membuktikan suatu data berdistribusi normal atau tidak.

Metode klasik dalam pengujian normalitas suatu data tidak begitu rumit. Berdasarkan pengalaman empiris beberapa pakar statistik, data yang banyaknya lebih dari 30 angka (n > 30), maka sudah dapat diasumsikan berdistribusi normal. Biasa dikatakan sebagai sampel besar. Namun untuk memberikan kepastian, data yang dimiliki berdistribusi normal atau tidak, sebaiknya digunakan uji statistik normalitas. Karena belum tentu data yang lebih dari 30 bisa dipastikan berdistribusi normal, demikian sebaliknya data yang banyaknya kurang dari 30 belum tentu tidak berdistribusi normal, untuk itu perlu suatu pembuktian. Pembuktian normalitas dapat
dilakukan dengan manual, yaitu dengan menggunakan kertas peluang normal, atau dengan menggunakan uji statistik normalitas.

Banyak jenis uji statistik normalitas yang dapat digunakan diantaranya Kolmogorov Smirnov, Lilliefors, Chi-Square, Shapiro Wilk atau menggunakan soft ware computer. Soft ware computer dapat digunakan misalnya SPSS, Minitab, Simstat, Microstat, dsb. Pada hakekatnya soft ware tersebut merupakan hitungan uji statistik Kolmogorov Smirnov, Lilliefors, Chi-Square, Shapiro Wilk, dsb yang telah diprogram dalam soft ware komputer. Masing-masing hitungan uji statistik normalitas memiliki kelemahan dan kelebihannya, pengguna dapat memilih sesuai dengan keuntungannya.


Calendar

September 2014
S S R K J S M
« Des    
1234567
891011121314
15161718192021
22232425262728
2930  

Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 30 pengikut lainnya.