Posts Tagged 'Uji Normalitas'

Metode Shapiro-Wilk untuk Uji Normalitas

Metode Shapiro Wilk menggunakan data dasar yang belum diolah dalam tabel distribusi frekuensi. Data diurut, kemudian dibagi dalam dua kelompok untuk dikonversi dalam Shapiro Wilk. Dapat juga dilanjutkan transformasi dalam nilai Z untuk dapat dihitung luasan kurva normal.

Rumus

Persyaratan

a. Data berskala interval atau ratio (kuantitatif)

b. Data tunggal / belum dikelompokkan pada tabel distribusi frekuensi

c. Data dari sampel random

Signifikansi

Signifikansi dibandingkan dengan tabel Shapiro Wilk. Signifikansi uji nilai T3 dibandingkan dengan nilai tabel Shapiro Wilk, untuk dilihat posisi nilai probabilitasnya (p). Jika nilai p lebih dari 5%, maka Ho diterima ; H1 ditolak. Jika nilai p kurang dari 5%, maka Ho ditolak ; H1 diterima. Jika digunakan rumus G, maka digunakan tabel distribusi normal.

Metode Kolmogorov-Smirnov untuk Uji Normalitas

Metode Kolmogorov-Smirnov tidak jauh beda dengan metode Lilliefors. Langkah-langkah penyelesaian dan penggunaan rumus sama, namun pada signifikansi yang berbeda. Signifikansi metode Kolmogorov-Smirnov menggunakan tabel pembanding Kolmogorov-Smirnov, sedangkan metode Lilliefors menggunakan tabel pembanding metode Lilliefors.

Rumus

Keterangan :

Xi = Angka pada data

Z = Transformasi dari angka ke notasi pada distribusi normal

FT = Probabilitas komulatif normal

FS = Probabilitas komulatif empiris

FT = komulatif proporsi luasan kurva normal berdasarkan notasi Zi, dihitung dari luasan kurva mulai dari ujung kiri kurva sampai dengan titik Z.

Persyaratan

a. Data berskala interval atau ratio (kuantitatif)

b. Data tunggal / belum dikelompokkan pada tabel distribusi frekuensi

c. Dapat untuk n besar maupun n kecil.

Siginifikansi

Signifikansi uji, nilai | FT – FS | terbesar dibandingkan dengan nilai tabel Kolmogorov Smirnov. Jika nilai | FT – FS | terbesar kurang dari nilai tabel Kolmogorov Smirnov, maka Ho diterima ; H1 ditolak. Jika nilai | FT – FS | terbesar lebih besar dari nilai tabel Kolmogorov Smirnov, maka Ho ditolak ; H1 diterima. Tabel Nilai Quantil Statistik Kolmogorov Distribusi Normal.

Metode Liliefors untuk Uji Normalitas

Metode Lilliefors menggunakan data dasar yang belum diolah dalam tabel distribusi frekuensi. Data ditransformasikan dalam nilai Z untuk dapat dihitung luasan kurva normal sebagai probabilitas komulatif normal. Probabilitas tersebut dicari bedanya dengan probabilitas komultaif empiris. Beda terbesar dibanding dengan tabel Lilliefors pada Tabel Nilai Quantil Statistik Lilliefors Distribusi Normal.

Rumus

Keterangan :

Xi = Angka pada data

Z = Transformasi dari angka ke notasi pada distribusi normal

F(x) = Probabilitas komulatif normal

S(x) = Probabilitas komulatif empiris

F(x) = komulatif proporsi luasan kurva normal berdasarkan notasi Zi, dihitung dari luasan kurva normal mulai dari ujung kiri kurva sampai dengan titik Zi.

Persyaratan

a. Data berskala interval atau ratio (kuantitatif)

b. Data tunggal / belum dikelompokkan pada tabel distribusi frekuensi

c. Dapat untuk n besar maupun n kecil.

Signifikansi

Signifikansi uji, nilai | F (x) – S (x) | terbesar dibandingkan dengan nilai tabel Lilliefors. Jika nilai | F (x) – S (x) | terbesar kurang dari nilai tabel Lilliefors, maka Ho diterima ; Ha ditolak. Jika nilai | F (x) – S (x) | terbesar lebih besar dari nilai tabel Lilliefors, maka Ho ditolak ; H1 diterima. Tabel nilai Quantil Statistik Lilliefors.


Calendar

Juli 2014
S S R K J S M
« Des    
 123456
78910111213
14151617181920
21222324252627
28293031  

Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 30 pengikut lainnya.